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A Appendix: Burst model with lethal mutants

A.1 Motivation

In this article, infected cells release virions in numbers following a geometric
distribution. This is a reasonable assumption for many viruses that release viri-
ons by budding, but for bursting viruses, such as lytic bacteriophages, infected
cells may release a roughly fixed number of virions. As highlighted by Pearson
et al. (2011), the distribution of the number of released virions can influence
viral dynamics. In this appendix, we study lethal mutations when infected cells
release exactly N virions.

A.2 Generating function

Assuming that a virion of strain ¢ has a probability ¢; to infect a cell, which
will then produce N; virions, with a probability u;; to mutate from strain ¢ to
strain j, the general generating functions are:

g =1—-q¢g+q Z uijzjv"' for the all-or-none mechanism, and (1)
J
N;

g2 =1—q; +q Z Wij 25 for the independent mechanism.  (2)
J

In the particular case of one strain with lethal mutations only,
gau(z) =1 —q+q((1 = )2~ + p), (3)

gina(2) =1 —q+aq((1 = p)z +p)". 4)
The mean number of viable offspring virions one virion generates is Ry = ¢(1 —
m)N.



A.3 Extinction probability
A.3.1 General equations

Starting from one virion, using (3) and (4),
ean =1—q+q((1- u)eé\;l + ), and (5)

ina =1~ q+a((1 — p)esma + ). (6)

These equations can be solved numerically for any specific set of parameters,
however they have no general analytical solution.

A.3.2 Relation between the extinction probabilities for the all-or-
none and independent mechanisms

To test whether the extinction probability for the independent mechanism with
an additional initial round of mutations is equal to the extinction probability
for the all-or-none mechanism (Fig.3 main text), we define:

Cindmut = (1 — 1)€ind + p. (7)

Using (6), €ind,mut can be transformed:

€ind,mut = (1—#) (1 —q+ Q((l - .u)eind + /L)N)_hu = I_Q+q((1_ﬂ)6£\7rzd,mut+u)'

(8)
This equation is the same as equation (5), thus the extinction probability in the
all-or-none case is equal to the extinction probability in the independent case
with an initial round of mutations:

ea = (1 — p)€ing + p. 9)

A.3.3 Bounds to the extinction probabilities

There is no general solution to the equations for the extinction probabilities, but
lower and upper bounds can be found. The extinction probability at generation
t is e(t). Because an extinct viral lineage cannot come back to life, a lower
bound for e(o0) is e(1).

For the upper bound, e(c0) is the smallest real positive solution of g(z) = z,
and as g(0) > 0, then ¢'(z = e(00)) < 1. It leads to Nq(1 — p)e’; () < 1,
which combined with (5) leads to

eait(00) < Min (1, W) : (10)

Similarly,

eina(00) < Min (1, 1—g+p/(N(A— M))) .

11
1-1/N (11)
The extinction probability is larger under the budding model than under the
burst model: using equation (3) of main text and previous bounds, €u pudding =
1—¢l—p)+1/N>1—-q(1—p)/(1—=1/N) > equpurst- The same can be
shown for e;,q4.



A.3.4 When does extinction occur?

With the all-or-none mechanism, eq;;(1)/eq(00) > (1 — 1/N). Provided that
N is large, most extinctions occur during the first generation.
With the independent mechanism, the conclusion is less clear:

eind(]-)
€ind(00)

(I—g+gu™)A-1/N) 1-1/N
T—g+p/(NA=p) = 1=p/(N0=q)(1=p)

However, if p is small, N is large, and 1 — ¢ is not too small, most extinctions
also happen during the first generation.

> (12)

A.4 Distribution of the number of virions
Counting viable virions only, it can be shown using recurrence that:
e the mean number of virions at generation ¢ is (n(t)) = R},

e the variance in this number is var = Rj(R) — 1) <(]I\;;_1)1A - 1), with

A =1 for the all-or-none mechanism and A = 1 — p for the independent
mechanism. The variance in the budding model is larger than that in the
burst model (see equation (18)).

e the third moment is
N-1)A2 Ro(RE™1-1) RE—1
Mg = Rb(RE—1) <W <(N — 2)(RE + 1) + 3(N — 1p0tte T Ro=1 — 3(N — 1);;#())_—1 +2RE — 1.
If we focus on the distribution conditioned on survival of the viral lineage,
we can show that in the large ¢ limit:

e (n|alive)(t) o< RY, and (nlalive)ing ~ (1 — p)(nlalive) .y
L 'Uaralive(t) X R(Q)ta and Varglive,ind = (1 - N)Q'Ua'ral'we,all
i MS,alive(t) o8 Rgt: and M3,alive,ind = (1 - N)SMS,alive,all

For the first 3 moments at least, it is as if the surviving lineages had started
v = —log(1—pu)/ log(Ro generations earlier with the all-or-none mechanism than
with the independent mechanism (R;" = 1 — u). However, the distribution of
virions with the all-or-none mechanism is non-zero only for multiples of N,
contrary to the independent mechanism.

A.5 Lethal mutants, burst model: conclusion

Compared to the budding model, the variance and extinction probability are
smaller in the burst model. However, the comparison between the all-or-none
and independent mechanisms gives the same results for the burst and budding
models. e = (1 — p)eing + p, and, at least up to the third moment and in the
large t limit, the distribution of the number of virions conditioned on survival of
the viral lineage is as if the independent had started v = —log(1 — p)/ log(Rp)
generations later than the all-or-none.



B Appendix: lethal mutants, budding model

In this appendix, we give the details of the calculations leading to the results
on lethal mutants with the budding model discussed in the main text.

We assume that there is one strain, which undergoes lethal mutations with
probability p, leading to the generating functions:

1—p
wi(2) =1 — L . and 13
ga(?) q+q<1+N(1_2)+u) an (13)
q
in =1- . 14
B.1 Extinction probability
B.1.1 Opverall extinction probability
Extinction probabilities are solution of g(e) = e:
Ry—1
=1- 15
elo0) =1 - 0L, (15)

with Ay =1 and A;pg = 1 — p. We can check that e;nqg(1 — p) + p = ean-

B.1.2 How fast does extinction occur?

From the generating functions (13) and (14) taken at z = 0,

Ry

e(l)=1- T NA (16)
We combine this equation with equation (15):
1 NA

e(o0) T 1+ NA

Provided that Ry > 1 (which leads to N(1 — ) > 1 and N > 1), at least half
of the extinctions occur during the first generation, and often a much larger
proportion.

B.2 Distribution of the number of virions

Using recurrence, it can be shown that:

e The mean number of virions at generation ¢ is (n(t)) = Rf. If conditioned
on survival, (nauive(t)) = Rf/e(t). In the limit of large t, when e(t) —

e(00), we obtain (Ngiive,ind(t + v)) = (Nalive,au(t)), with v = —log(l —
1)/ log(Ro).
e The variance is
2N A
var—Rg(R3—1)<R0_1 —1). (18)
If conditioned on viral survival, vargive = % <2NA géj +1- %),

. 2
which in the large ¢ limit is ~ (Z‘ﬂf) . Again, vareive,ind(t + v) ~

VAT glive,all (t) .



It can also be shown that the distribution of the number of virions (n = 0
excluded) is a geometric distribution for any generation ¢ > 0.

C Appendix: Adaptive evolution

A virion of strain i successfully infects a cell with probability ¢;, which then
produces N; new virions. The mean reproductive number without mutations is
R; = ¢;N;. Under the all-or-none mechanism, these new virions are all mutants
with probability p;. Under the independent mechanism, each of these new
virions may be a mutant with probability p;. The generating functions (1) and
(2) in the main text become:

11— Ha >
iz, 20) =1 —qu + + , and 19
91,ai1(21, 22) QT q (1+N1(1—z1) 14 Ni(1 — 29) (19)

q1
L+ Ni(1 = (1 =)z — paze)

Similar equations can be written for go, the generating function starting from
one virion of strain 2.

G1.ind(z1,22) =1 —q1 + (20)

C.1 Survival probabilities
C.1.1 No general relation between s,; and s;,q

From the argument in the main text (Fig.3 main text), we guess that in some
Cases Sqi1 = Sind,mut,1 With the latter defined as (1 — p1)Sing,1 + £418ind,2; a8
verified for the lethal mutants (so = 0). Here, using (20):

(=) - H1G2
14 N15ind,mut,1 1+ NZSind,mut,2

Sind,mut,n = (1 — p1)q1 + paqe — , o (21)

to compare with (19):

11— H1 >
o N . 22
alll =41 — Q1 <1 + Nisauq 1+ NiSauz2 2

Thus, there is no straightforward relation between sqy; and s;,q, €xcept in the
special cases of neutral mutations (¢g; = go and N; = N3), or lethal mutations

(82 = 0)
C.1.2 Analytical solutions for survival probabilities

Using (19) and (20), the survival probabilities starting from a virion of strain ¢
are solutions of:

1=t P
s = Sall,1, S =q — + 23
attn = fau(Sains Sain2) = 1 — @1 <1 F Nisers T T Nisans (23)

and the symmetric equation (with 1 <» 2) for the all-or-none mechanism, and

q1
L+ Ni((1 = p1)Sind,1 + H15ind,2)

Sind,1 = find,1(Sind,1, Sind,2) = 1 (24)



and the symmetric equation (with 1 < 2, i.e. with indices 1 and 2 interchanged)
for the independent mechanism. These systems can be solved by computer
algebra systems, but the expressions obtained are very large. Since it is neither
easy to find which solution is real and in (0, 1], nor to gain insights from the
results, we use approximations as detailed below.

C.1.3 Iterative approximation of the survival probabilities

Survival probability without mutations If we neglect mutations, it is as
if there were only one strain:

(0) 1
W)= 0,¢; — — ». 25
s; max{ q Ni} (25)
We recover the result from Pearson et al. (2011): when the initial virion suc-
cessfully infects a cell (probability ¢), it has a probability 1/Ry = 1/(¢N) of
extinction (a classic result for geometric distributions (Harris, 1963)).

Definitions (s}, s3) is solution of s; = fi1(s1,82) and s2 = fa(s1,82). We
reformulate these equations as s; = hi(s2) and sa = ha(sy). With the all-or-
none mechanism:

1 1 q1p 1 q1p1 2 4q1p182
=h = — [ — - - -
51,all 1,a11(52) 3 ( A ta- g © Niss + \/(Nl @ty T Niss 1 "+ Niss

(26)
With the independent mechanism:
1 1+ Nipisz 1+ p1Nis2 2 4q1 182
ind — h in - = - -
Stina = ind(52) = 5 (ql N —pm) \/(N1(1 ) T w
(27)

hs is similarly defined (symmetry 1 <+ 2). In what follows, we study only one
strain, but by symmetry all the conclusions are also valid for the other strain.

Iterative process The iterative process is shown in figure 1. In the plane
(81,82), h1 and hy intersect for (s, s3), the solution of the system. séo) is given
by the intersection between the s; = s curve and hs. Indeed, the 0" order does
not consider mutations (25), so it is equivalent to having mutational exchange

with a strain with the same fitness. Then, h; taken at so = Sgo) gives sgl); then

hy taken at s; = sgl) gives 352), and so on.

Convergence of the iterative approximations Does this iterative process
converge to the solutions (s7, s5)? To answer this question, we study properties
of f to deduce properties of h and ultimately properties of hj(hs), which we use
to prove convergence. All f and ¢ functions are C* for s € [0, 1].

It can be easily checked that V(sa2,s) € ([0,1],[0,1]), fi(s2,s) € [0,1),
Of1/0s1 > 0,0f1/0sy > 0, 0%f1/0s7 < 0,0%f1/0s3 < 0,0%f1/(0s10s2) < 0.
We additionally need to prove that for s; € [h1(0), h1(1)] (relevant range as s;
cannot be outside it during the iterative process), df1/9s1 < 1.

Oftan (1= p1)@i Ny

851 - (1+N151)2 ’ and (28)
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Figure 1: Iterative process for the approximation of the survival probability. Here,
the strain 1 is bound to extinction without mutations (s§°> =0).

0f1,ind _ (1= p1)q1 Ny (29)
0s1 (14 Ni((1 = p1)s1 + pas2))?

If (1 —p1)g1N1 < 1, then 9f1/0s1 < 1 for any value of s; and sy. Else, if

(1 — p1)q1 Ny > 1, we can check that %‘ o) < 1. As 92f,/0s2 < 0, this is
s1=h1
enough to prove that df;/0s; < 1 for any s; in [h1(0), hi(1)].

Now, we use the properties of f to infer the properties of h. It is clear that
h1([0,1]) € [0,1). As s; = hi(s2) and s; = fi(s1, $2), differentiating these
equations with respect to sq leads to dhy/dse = a = 0s, f1/(1— 05, f1). We have
shown previously that J,,f1 > 0 and 0s, f1 < 1 (for the pertinent range of s1).
As a consequence, % > 0.

With the second derivative we eventually obtain:

%t s 20°f
PPhy a3 T 20555, T G2 (30)
ds3 1- 94
2 (981
« is positive, 1 — % > 0 for sgo), and the second derivatives of f; are negative

d?h,
) dsg < O.

We now use the properties of h to deduce the properties of hy(hs).

As h;([0,1]) € [0,1), h1(h2(]0,1])) C [0, 1).

As for the derivative, (hy(ha))" = hy.h}(ha), thus as h; and hy have positive
derivatives, hi(h2) has also a positive derivative.

For the second derivative, (hi(h2))” = hY.h}(ha) + (h%)%.hY (hs): the deriva-
tives of h; are positive, and the second derivatives are negative, so the second
derivative of hq(h2) is negative.

or zero. As a consequence

The iterative approximation leads to s§j+2) = hi(hs (s§]))) If h1(h2(0)) > 0,

as h1(h2(1)) < 1, the derivative is positive and the second derivative is negative,



there is at one fixed point in (0, 1), and starting the iteration from any s; € (0,1)
converges to it. The same reasoning can be made for ss.

If h1(h2(0)) = 0, the procedure for s( ") and sé%ﬂ) starts on the fixed point
(0,0), and stays to this point. In this case, the procedure should be done for

sg%ﬂ) and sé%) only.

C.1.4 Approximation of the survival probabilities in the limit of
small mutation rates

Another approximation is to take both mutation rates small. We derive this
approximation in the general case of n different strains. The generating map is
G(z) = (G1(2),...,Gp(%)) where z = (z1,...,2,). We define F; = G;(1 —s) —
(1—s;), where 1 —s=(1—s1,...,1—s,), and obtain:

72”“’”+27’“‘” 1| and  (31)

Fiall(&u) =S +QZ 1+ N,s, 1+ N.s,
9% i 9]

; 1
Fl-md(S, 1) = si + G —-1]. (32

1+ N; ((1 = D i Mig)Si D Niij)

Let § = §(u) denote the survival probabilities which satisfy F;(8, ) = 0 for all
i=1,2,...n. To write down a first order approximation of §; with respect to y,
we begin by implicitly differentiating F;(8, 1) = 0 with respect to p;; for j # i.

8F ask o
Z Osy, 8/1'17 B (33)

8%

OF;

and then evaluate these expressions at ;1 = 0 and 3(0). Since g~ equals zero at
J

w =0 for all j # i, equation (33) simplifies to

OF; OF; 0s;
6/“;‘ 857 8,uij

=0 (34)

at 4 = 0 and s = $(0). Solving for the derivatives evaluated at © = 0 and

§ = 5(0) yields
OFM 1 1
! =dq; ( ~ ~ > ) (35)

c’)uij 14+ NiSj 1+ N;3;
DFind (3 — 8)
L= Nt 50 and 36
8#1’]’ qilVi (1 T Nigi)27 an ( )
oF; qiNi
=1—-— . 37

Next, we implicitly differentiate F;(8, ) = 0 with respect to p; for j # i
and k # j:
OF; "\ OF; 03
O

=0, 38
— Osi Ok (38)



8Fi —
e, equals zero at =0

and evaluate these expressions at y = 0 and $(0). Since
for all j # i and aF = 0, equation (38) simplifies to

OF, 03
Os; Opje

(39)

at ¢ =0 and s = 3(0).

Since 14+ N;5;(0) = 1if ¢; N; < 1 and ¢; V; otherwise, it follows from equation
(37) that gii > 0 at p = 0. Hence, (39) 1mphes that ézf]k = 0 for j # i and
k # 7. On the other hand, solving (34) yields

05 £E
i Opij
0) = ——kiz 40
8%() or. (40)
where

S = 8:(0,0) = (¢ — 1/N;) " (41)

and 27 = max{0, z}. Hence, the first order Taylor approximation of §;(u) is:

1 1
1+(@N;—1)T  1+Ni(q;—1/Nj)T
(@ = 1/N)T+ > i e N ) (42)
J#i (14+(gi N;—1)T)2

for the all-or-none mechanism, and:

— 1/N;)* — (g — 1/N;)*
(o = /M) ; /1)++1)( Q7]/\fl - (43)

for the independent mechanism.
In the special case of evolutionary escape, say §1(0) = 0 and §2(0) > 0 and
n = 2, these first order approximations simplify to

gl q1 N1 g2 — 1/Ny

~ , 44
Mll—N1Q11+N1(Q2—1/N2) (44)
R 1

35" ~ o — N, H24q2, (45)

sind N 1
- — d 46
S (CD NQ) an (46)

~in 1 2
R A (47)

C.1.5 Comparison of the approximations

It can be shown that the iterative approximation sg ) taken in the limit 1

small results in the same expressions as the Taylor expansion when p is small.

&)

When R; is not too close to 1, iterative s; * and small y approximations work

almost equally well (Fig. 2). However, 51(1)

parameters.

is more suitable on a larger range of



1= p2 =0.1, g2 = 0.2 p1 = pe = 0.01, 1 =p2 =0.01, g2 =1
(s =0.1) @ =02 (s =01) (s =0.9)

Figure 2: Two strains, evolutionary escape. Survival probabilities as a function of
Ri1 = Niqi, with ¢ variable and N; fixed. All-or-none (red, dotted lines) and in-
dependent (blue, dashed lines). s<20) (green dot-dashed line), sﬁ“’ (black solid line).
Exact expression for s; (thick dotted or dashed lines), approximation sgl) (solid lines),
further approximation with p; small (equations 44 and 46) (thin dotted or dashed
lines). N1 = N2 =10.

C.1.6 The independent mechanism results in more survival of the
viral lineage than the all-or-none mechanism

Consider the case of n strains. Let ¢;(z) be the generating function for the
number of virions released by a cell infected with a virion of type i. To avoid
degenerate cases, we assume that ¢;(0) > 0 (i.e. there is a positive probability of
no offspring) and ‘f;‘;} (0) > 0 for some k > 2 (i.e. there is a positive probability
of at least two offspring). Let p;; be the probability that a virion of type i

produces a virion of type j. Note that i = 1. For the case of all-or-

none-mutations, the generating map Ggi(2) = (Gau,1(2),- .., Gaun(2)) where
z=(z1,...,2n) is given by
Gani(z) =1—qi+q Z pijci(z5)- (48)

J

In the case of independent-mutations, the generating map G;,q(z) is given by

Ginai(2) =1—qi+aqici | Y mijz |- (49)

J

Since ¢; are generating maps, they are given by power series with all positive
coefficients and, consequently, they are convex functions. For z,y € R", we
write x > y if z; > y; for all 4, > y if x > y and z; > y; for some i, and = > y
if z; > y; for all . By Jensen’s inequality Gui,;(2) > Ging,i(2) for all z > 0 and
i. This inequality is strict provided that z; # z; for some 4,j. Furthermore,
the fact that these generating maps correspond to power series with positive
coefficients implies that G and Gy,q are monotone maps i.e. G(z) > G(y) if
x > y. Moreover, if the mutation matrix (p;;) is primitive, then G (x) > G"(y)
whenever > y. Here, G* denotes composing the map G with itself ¢ times.

Let eqy; and e;nq,; be the probabilities of extinction for a population initi-
ated with one individual of type ¢ with all-or-none-mutations or independent-

mutations, respectively. Let e = (€aii1,- - -, €atl,n) a0d €ing = (€ind,1; - - - ; €ind,n)-

Standard branching process theory (Harris, 1963) implies that lim;_,» G%,;,(0) =

10

14



equ and limy_,o0 Gt ,(0) = €ipg. We claim that G%,,(0) > G ,(0) for all ¢.
Clearly G;na(0) = Gau(0). Assume G, (0) > G%,,(0). Then, by the aforemen-
tioned properties of the generating maps,

Gan(Gly(0))

2 Gall( znd(o))
> Gina(Gh4(0) = GLE1(0).

ind

Gair' (0)

Hence, induction implies the claim and we have shown that ey; > e;,q. When
the ¢; are different and the mutation matrix is primitive, it can also be shown
that this inequality is strict as GZ%;,(0) > G?, ,(0).

All-or-none mechanism: out of five attempts, only one leads to success.

y \ Fy y \
o‘io o?:i oé:o O

e

by N Py
ot G0 x®
Vo Y

Independent mechanism: out of five attempts, three lead to success.

Figure 3: For a given mean mutation rate, the independent mechanism is more likely
to lead to survival than the all-or-none mechanism. Consider the following simplified
situation. In five separate instances, a very unfit virus (depicted by a blue polygon)
infects a host cell (represented by large green disks), producing each time 4 new virions.
With a probability of 20%, it mutates, and this mutant (depicted by a red star) has a
very high survival probability. Clustered mutations lead to less overall survival.

An heuristic explanation for the independent mechanism leading to more
survival is detailed in figure 3.

C.2 Distribution of the number of virions
C.2.1 Mean number of virions

We define (nfj )(t)> the mean number of virions ¢ at generation ¢, starting from a
particle j at generation 0; a; = ¢;N; (1 — p;) and 8; = ¢; N;iu; the mean number
of virions produced in one cycle by a virion of strain i, of the same strain («),
and of the other strain (3). This leads to:

vo- (i) -6 2 G)
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Figure 4: Two strains, influence of the mutation rate on the mean number of virions.
(n1(¢)) (thin lines) and (n2(t)) (thick lines) as a function of generation ¢, from (53).
Here the dynamics start at generation ¢ = 0 with one viral particle of strain 1. p; =
2 = p, p = 0.05 (blue, solid lines), p = 0.1 (purple, dashed lines), p = 0.2 (red,
dotted lines). q1N1 = 097 l]QNQ =1.2.

Defining r = \/(al — )2 + 4031 B2, the eigenvalues are:

o +ayxr
Ay = ﬁ72, and their associated eigenvectors (51)

2
N ayp—aotr
vt=(2? ). (52)

Y=c, Vi +c_V_, with cy = +5,/r.
¢t which can also be written:

Starting with one particle of strain 1, (1,0
At generation ¢, N(t) = c; Vi, +c_V_A

(m()) _ 1 (A —a)X — (A= —ag)\")
<<n2(t)>) D VDN < 8 (Xi —) > . (53)

If strain 1 is less fit than strain 2, a larger mutation rate means that a benefi-
cial mutation happens earlier, leading to a faster adaptation. However, it also
means that the long-term mutation-selection balance is shifted towards more
mutations, resulting in a slower long-term growth (Fig. 4).

C.2.2 Variance of the number of virions

Defining var(i,n;,t) as the variance of the number of virions of type j, and
cov(i, ng, nj,t) the covariance between the number of virions of type k and j,
at generation ¢ starting from one virion of type i; A; o = 1, Ajing = 1 — wi,
Bian =1, Biina = ti, Cauu =0, Cing = 1,

var(1l,nq,t)

V(t) = Cov(lvnlvn27t) ) (54)
var(1,ng,t)
a? 201132 B3
M=a1p1 aiaz+ 12 a2 |, and (55)
B3 200281 o3

12



0(1(2N1A1 +1-— Oq) [32(2N2B2 +1-— ﬂg)
G=| i (2 -1) sk (1) |, (56)
51(2N131+1—ﬂ1) a2(2N2A2+1 —Ozg)

it can be shown using the derivatives of the generating function that:

V(t+1)=MV(t)+ GN(t), leading to (57)
t—1

V(t)=Y M'T"IGN(i) (58)
=0

since V(0) = 0. For M, eigenvalues are:

)\0 = Q10 — ﬂlﬂ?? (59)
1
AL=g5 (aF + a5 + 26182 — arr — agr) = A2, and (60)
1
Ar =g (af + 03 + 26182 + anr + agr) = A% (61)

A2 is the largest eigenvalue. Indeed, Ao > A1 and Ay > A (except if & = ag = 0;
or a = ag with $; = 0 or 2 = 0: these regimes are not relevant to our study).
Ao is the square of A, the largest eigenvalue for the mean number of virions:
in the long time limit, the variances and covariances scale as the square of the
mean number of virions. As in the lethal mutant case, the variance is relatively
large (the standard deviation scales as the mean). The eigenvectors are:

=203,
v = | ar—az |, (62)
261
1 arr(—a1 +ag +7) = Bi1f2(e1 +az +7)
V1 = 55 B1(26102 — ar1(—ag + ag + 1)) , and
201 (01 + a2 — 1) Bi(ar +ag —1)
(63)
1 onr(og —ag +1) = fifz(on + a2 — 1)
V2 = T3 B1(26182 — ar(—a1 +az — 1)) . (64)
461 (OélOé2 - /8162) B%(al +ag + ’l")
Projecting on the eigenvectors eventually leads to:
b1
V(t) =
O ===~

{%{(AB_MP >\(t)—)\t)f6+(041—042+7“>\6—/\i a1 — g — 1 Ay — AL

Mo — A Ao — A 2 Ao — Ay 2

M—Ap A - )7t 2 M= Ar 2

o {(Ag—Ag Ag—xf>f, (al—a2+mg—x; a; —ay —r Af = AL
1

2

e {(Aé—/\i Ag—/\t>f, (al—ag—kr)\g—)\i a1 —ag — 1 A5 — AL
) _

A2 — A Ao — A 2 Aa — Ay 2

(65)

with:
1 = —P1G12 + (a1 — a2)Gag + B2G3o (66)
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y 1
0 = B1 (=A1G11 + (a1 — a2)Ga1 + F2Ga1) (67)

B
f1=26 (516712 — Galag —as+ 1)+ G <52 + W)) (68)
=2 <51G11 = Gar( —ag +71) + Ga (—52 + W)) (69)
f2=P (51G12(a1 +az — 1) —2062Ga2 (2/31 + %(al —Qz — 7")) —Gs2 (%T(al —az—71)+ PBa(on +az + ﬂ))
(70)
f2 = B1Gu(ai+az—r)—282Gxn (251 + %(m —az — 7‘)) —G31 (%7’(0&1 —az—71)+ B2(n + o2 + 7“))
(71)

Large ¢ limit We now study this result in the large ¢ limit. \q is larger than
Ao and A, A_ < A4, and )\3_ = Ao. We focus here on the case where virus may
survive, i.e. Ay > 1. Then \s = )\i > Ay. So now we simplify previous results
in the large ¢ limit, keeping only the leading terms in L.

t
V(t) ~ BiAzv2

B r2(Aa —A_) (A2 — Ay) (2f£ + ()\2 — Qo) é’) (72)

In this limit, the ratio between the variances/covariances in the all-or-none vs.
independent is:
Vail N 2f2’all + ()\2 _ a2)f;a”
Vind = oflind 1 (Xy — ag) fyind’

We now study this ratio to show that in the large ¢ limit, var; o > var; ing.

First, Ay > as. Indeed, Ay = )\i, Ar = (a1 +as+7)/2. If a1 < ag,
r > as — ap, leading to Ay > as. Then Ay > Aias > ag, because we are
interested in the situation where the virus may survive, i.e. AL > 1. If ag > aq,
r > a1 — ag, leading to Ay > a3 > ag. Then Ag > Apas > as.

It can be easily checked that G‘fé-l > Gi’}d > 0, Ggé-l > Gé’;d > 0, and
G3li <0< Gy,

The coefficients of G1; in f5 and f3 are of the sign of a1 + g —r. 7 =
\/((1 —p1)R1 — (1 — p2)R2)? + 4py io Ry Ro. Assuming g < 0.5, 4pugpo Ry Re <
4(1—p1)(1—p2) Ry Ra, leading to r < ((1—p1)R1+(1—p2)Re), thus oy +ag—r >
0. The coefficients of Gy; in f; and fj are positive, and as G} > G{'%, so we
conclude that these terms are larger with the all-or-none mechanism than with
independent mechanism.

The coefficients of Go; in f5 and fJ are opposite of the sign of 28;52 +
ag(a; — ag — ). Fixing a = ua/py, this expression is positive for p1 between
0 and He = (3R1 + Rg(l + (l) — \/(3R1 + Rg(l + a))2 — 8R1(R1 + RQ))/(4R1)
For a =1 (i.e. p1 = p2), pe = 1/2. Opu./0a < 0: The higher po compared to
11, the smaller p.. As G%l <0< Gé’;d, w1 < e ensures that these terms are
larger with the all-or-none mechanism than with the independent mechanism.

The coefficients of G5 in f5 and f5 are opposite of the sign of a7 (ayaar)+
B1B2(c1 + a2 + ). This expression is negative for 0 < pg < 1/(1 4 pa/p1). As
G4l > G4, these terms are larger with the all-or-none mechanism than with
the independent mechanism.

(73)
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Conclusion on the variance We have proved that in the long time limit the
variance is larger in the all-or-none than in the independent case, provided that
the mutation rate is small enough (e.g. when u; = s, a sufficient condition is
i < 0.5). We have not proven that the variance is larger with the all-or-none
mechanism than with the independent mechanism for any generation ¢, only for
the long time limit, but numerically, we see no instance of the contrary.

C.3 Extension to multi-step evolutionary trajectories

We have discussed a simplified model where one mutation is enough for adap-
tation. In many real systems, however, several mutations are needed for a virus
to adapt to some challenge (Shih et al., 2007; Bloom et al., 2010). Consider a
network of genotypes where each node is a strain and each edge represents one
mutational step. For low mutation rates, the survival probability of fit strains
(i.e. those with R = ¢/N > 1) is relatively unchanged by mutations. Then the
survival probabilities of their unfit (R < 1) neighbors can be approximated for
low mutation rates by adding the contributions to survival resulting from the
mutations to each of the neighboring fit strains (see Iwasa et al. (2004) and
Weissman et al. (2009) for a more detailed discussion of this approach). Then,
survival probabilities of the next-nearest neighbors are considered, and so on.
Heuristic arguments help us to focus on which steps in a multi-step trajectory
will be most influenced by replication mechanism. It is clear from arguments
presented above, and in figure 3, that the surival probability of the viral lin-
eage for a mutational step from an unfit strain to a fit strain differs markedly
between the all-or-none and independent mechanisms. In contrast, survival of
fit strains is not strongly affected by mutations and consequently is insensitive
to the replication mechanism. Steps between unfit strains will also be relatively
insensitive to replication mechanism, by the following logic. Consider a strain ¢
with several neighbors, none of them fit, and among which strain j is closest (i.e.
the smallest number of mutational steps from) a fit strain. For sufficiently low
mutation rates, the dominant contribution to s; is from mutations to j. Then
the ratio between the survival probabilities under the two mechanisms, si"? /53!t
tends to 1+ NV;s;. Because j is also an unfit strain, its survival probability is of
the order of 1 or smaller, so N;s; is < N;ut, which in this limit of small mutation
rates is much less than 1. Thus si"?¢/s% is not very different from one. This
can be understood using a variation of the argument shown in figure 3: if the
mutant leads to survival only 20% of the time, there is no more clustering of es-
cape mutants in the all-or-none mechanism, so the all-or-none and independent
mechanisms have approximately the same probability of escape. Combining
these arguments to consider multi-step trajectories in general, we see that the
independent mechanism will still lead to more viral survival than the all-or-none
mechanism, but the ratio of the survival probabilities will be dominated by the
steps from unfit to fit strains. The two-strain case presented above provides the
essential building block to explore more complex evolutionary trajectories.
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