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A Appendix: Burst model with lethal mutants

A.1 Motivation

In this article, infected cells release virions in numbers following a geometric
distribution. This is a reasonable assumption for many viruses that release viri-
ons by budding, but for bursting viruses, such as lytic bacteriophages, infected
cells may release a roughly �xed number of virions. As highlighted by Pearson
et al. (2011), the distribution of the number of released virions can in�uence
viral dynamics. In this appendix, we study lethal mutations when infected cells
release exactly N virions.

A.2 Generating function

Assuming that a virion of strain i has a probability qi to infect a cell, which
will then produce Ni virions, with a probability µij to mutate from strain i to
strain j, the general generating functions are:

galli (~z) = 1− qi + qi
∑
j

µijz
Ni
j for the all-or-none mechanism, and (1)

gindi (~z) = 1− qi + qi

∑
j

µijzj

Ni

for the independent mechanism. (2)

In the particular case of one strain with lethal mutations only,

gall(z) = 1− q + q((1− µ)zN + µ), (3)

gind(z) = 1− q + q((1− µ)z + µ)N . (4)

The mean number of viable o�spring virions one virion generates is R0 = q(1−
µ)N .
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A.3 Extinction probability

A.3.1 General equations

Starting from one virion, using (3) and (4),

eall = 1− q + q((1− µ)eNall + µ), and (5)

eind = 1− q + q((1− µ)eind + µ)N . (6)

These equations can be solved numerically for any speci�c set of parameters,
however they have no general analytical solution.

A.3.2 Relation between the extinction probabilities for the all-or-

none and independent mechanisms

To test whether the extinction probability for the independent mechanism with
an additional initial round of mutations is equal to the extinction probability
for the all-or-none mechanism (Fig.3 main text), we de�ne:

eind,mut = (1− µ)eind + µ. (7)

Using (6), eind,mut can be transformed:

eind,mut = (1−µ)
(
1− q + q((1− µ)eind + µ)N

)
+µ = 1−q+q((1−µ)eNind,mut+µ).

(8)
This equation is the same as equation (5), thus the extinction probability in the
all-or-none case is equal to the extinction probability in the independent case
with an initial round of mutations:

eall = (1− µ)eind + µ. (9)

A.3.3 Bounds to the extinction probabilities

There is no general solution to the equations for the extinction probabilities, but
lower and upper bounds can be found. The extinction probability at generation
t is e(t). Because an extinct viral lineage cannot come back to life, a lower
bound for e(∞) is e(1).

For the upper bound, e(∞) is the smallest real positive solution of g(z) = z,
and as g(0) > 0, then g′(z = e(∞)) < 1. It leads to Nq(1 − µ)eN−1all (∞) < 1,
which combined with (5) leads to

eall(∞) ≤Min

(
1,

1− q(1− µ)
1− 1/N

)
. (10)

Similarly,

eind(∞) ≤Min

(
1,

1− q + µ/(N(1− µ))
1− 1/N

)
. (11)

The extinction probability is larger under the budding model than under the
burst model: using equation (3) of main text and previous bounds, eall,budding =
1 − q(1 − µ) + 1/N ≥ (1 − q(1 − µ))/(1 − 1/N) ≥ eall,burst. The same can be
shown for eind.
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A.3.4 When does extinction occur?

With the all-or-none mechanism, eall(1)/eall(∞) ≥ (1 − 1/N). Provided that
N is large, most extinctions occur during the �rst generation.

With the independent mechanism, the conclusion is less clear:

eind(1)

eind(∞)
≥ (1− q + qµN )(1− 1/N)

1− q + µ/(N(1− µ))
≥ 1− 1/N

1− µ/(N(1− q)(1− µ))
. (12)

However, if µ is small, N is large, and 1 − q is not too small, most extinctions
also happen during the �rst generation.

A.4 Distribution of the number of virions

Counting viable virions only, it can be shown using recurrence that:

• the mean number of virions at generation t is 〈n(t)〉 = Rt0

• the variance in this number is var = Rt0(R
t
0 − 1)

(
(N−1)A
R0−1 − 1

)
, with

A = 1 for the all-or-none mechanism and A = 1 − µ for the independent
mechanism. The variance in the budding model is larger than that in the
burst model (see equation (18)).

• the third moment is
M3 = Rt

0(Rt
0−1)

 (N−1)A2

(R0−1)(R0+1)

(N − 2)(Rt
0 + 1) + 3(N − 1)

R0(R
t−1
0 −1)

R0−1

 − 3(N − 1)A
Rt

0−1

R0−1
+ 2Rt

0 − 1

 .

If we focus on the distribution conditioned on survival of the viral lineage,
we can show that in the large t limit:

• 〈n|alive〉(t) ∝ Rt0, and 〈n|alive〉ind ' (1− µ)〈n|alive〉all

• varalive(t) ∝ R2t
0 , and varalive,ind ' (1− µ)2varalive,all

• M3,alive(t) ∝ R3t
0 , and M3,alive,ind ' (1− µ)3M3,alive,all

For the �rst 3 moments at least, it is as if the surviving lineages had started
v = − log(1−µ)/ log(R0 generations earlier with the all-or-none mechanism than
with the independent mechanism (R−v0 = 1 − µ). However, the distribution of
virions with the all-or-none mechanism is non-zero only for multiples of N ,
contrary to the independent mechanism.

A.5 Lethal mutants, burst model: conclusion

Compared to the budding model, the variance and extinction probability are
smaller in the burst model. However, the comparison between the all-or-none
and independent mechanisms gives the same results for the burst and budding
models. eall = (1− µ)eind + µ, and, at least up to the third moment and in the
large t limit, the distribution of the number of virions conditioned on survival of
the viral lineage is as if the independent had started v = − log(1− µ)/ log(R0)
generations later than the all-or-none.
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B Appendix: lethal mutants, budding model

In this appendix, we give the details of the calculations leading to the results
on lethal mutants with the budding model discussed in the main text.

We assume that there is one strain, which undergoes lethal mutations with
probability µ, leading to the generating functions:

gall(z) = 1− q + q

(
1− µ

1 +N(1− z)
+ µ

)
, and (13)

gind(z) = 1− q + q

1 +N(1− µ)(1− z)
. (14)

B.1 Extinction probability

B.1.1 Overall extinction probability

Extinction probabilities are solution of g(e) = e:

e(∞) = 1− R0 − 1

AN
, (15)

with Aall = 1 and Aind = 1− µ. We can check that eind(1− µ) + µ = eall.

B.1.2 How fast does extinction occur?

From the generating functions (13) and (14) taken at z = 0,

e(1) = 1− R0

1 +NA
. (16)

We combine this equation with equation (15):

e(1)

e(∞)
=

NA

1 +NA
. (17)

Provided that R0 > 1 (which leads to N(1 − µ) > 1 and N > 1), at least half
of the extinctions occur during the �rst generation, and often a much larger
proportion.

B.2 Distribution of the number of virions

Using recurrence, it can be shown that:

• The mean number of virions at generation t is 〈n(t)〉 = Rt0. If conditioned
on survival, 〈nalive(t)〉 = Rt0/e(t). In the limit of large t, when e(t) →
e(∞), we obtain 〈nalive,ind(t + v)〉 ' 〈nalive,all(t)〉, with v = − log(1 −
µ)/ log(R0).

• The variance is

var = Rt0(R
t
0 − 1)

(
2NA

R0 − 1
− 1

)
. (18)

If conditioned on viral survival, varalive =
Rt

0

1−e

(
2NA

Rt
0−1

R0−1 + 1− Rt
0

1−e

)
,

which in the large t limit is '
(
Rt

0NA
R0−1

)2
. Again, varalive,ind(t + v) '

varalive,all(t).
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It can also be shown that the distribution of the number of virions (n = 0
excluded) is a geometric distribution for any generation t > 0.

C Appendix: Adaptive evolution

A virion of strain i successfully infects a cell with probability qi, which then
produces Ni new virions. The mean reproductive number without mutations is
Ri = qiNi. Under the all-or-none mechanism, these new virions are all mutants
with probability µi. Under the independent mechanism, each of these new
virions may be a mutant with probability µi. The generating functions (1) and
(2) in the main text become:

g1,all(z1, z2) = 1− q1 + q1

(
1− µ1

1 +N1(1− z1)
+

µ1

1 +N1(1− z2)

)
, and (19)

g1,ind(z1, z2) = 1− q1 +
q1

1 +N1(1− (1− µ1)z1 − µ1z2)
. (20)

Similar equations can be written for g2, the generating function starting from
one virion of strain 2.

C.1 Survival probabilities

C.1.1 No general relation between sall and sind

From the argument in the main text (Fig.3 main text), we guess that in some
cases sall,1 = sind,mut,1 with the latter de�ned as (1 − µ1)sind,1 + µ1sind,2, as
veri�ed for the lethal mutants (s2 = 0). Here, using (20):

sind,mut,1 = (1− µ1)q1 + µ1q2 −
(1− µ1)q1

1 +N1sind,mut,1
− µ1q2

1 +N2sind,mut,2
, (21)

to compare with (19):

sall,1 = q1 − q1
(

1− µ1

1 +N1sall,1
+

µ1

1 +N1sall,2

)
. (22)

Thus, there is no straightforward relation between sall and sind, except in the
special cases of neutral mutations (q1 = q2 and N1 = N2), or lethal mutations
(s2 = 0).

C.1.2 Analytical solutions for survival probabilities

Using (19) and (20), the survival probabilities starting from a virion of strain i
are solutions of:

sall,1 = fall,1(sall,1, sall,2) = q1 − q1
(

1− µ1

1 +N1sall,1
+

µ1

1 +N1sall,2

)
(23)

and the symmetric equation (with 1↔ 2) for the all-or-none mechanism, and

sind,1 = find,1(sind,1, sind,2) = q1 −
q1

1 +N1((1− µ1)sind,1 + µ1sind,2)
(24)
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and the symmetric equation (with 1↔ 2, i.e. with indices 1 and 2 interchanged)
for the independent mechanism. These systems can be solved by computer
algebra systems, but the expressions obtained are very large. Since it is neither
easy to �nd which solution is real and in (0, 1], nor to gain insights from the
results, we use approximations as detailed below.

C.1.3 Iterative approximation of the survival probabilities

Survival probability without mutations If we neglect mutations, it is as
if there were only one strain:

s
(0)
i = max

{
0, qi −

1

Ni

}
. (25)

We recover the result from Pearson et al. (2011): when the initial virion suc-
cessfully infects a cell (probability q), it has a probability 1/R0 = 1/(qN) of
extinction (a classic result for geometric distributions (Harris, 1963)).

De�nitions (s∗1, s
∗
2) is solution of s1 = f1(s1, s2) and s2 = f2(s1, s2). We

reformulate these equations as s1 = h1(s2) and s2 = h2(s1). With the all-or-
none mechanism:

s1,all = h1,all(s2) =
1

2

− 1

N1
+ q1 −

q1µ1

1 +N1s2
+

√(
1

N1
− q1 +

q1µ1

1 +N1s2

)2

+
4q1µ1s2
1 +N1s2

 .

(26)
With the independent mechanism:

s1,ind = h1,ind(s2) =
1

2

q1 − 1 +N1µ1s2
N1(1− µ1)

+

√(
1 + µ1N1s2
N1(1− µ1)

− q1
)2

+
4q1µ1s2
1− µ1

 .

(27)

h2 is similarly de�ned (symmetry 1 ↔ 2). In what follows, we study only one
strain, but by symmetry all the conclusions are also valid for the other strain.

Iterative process The iterative process is shown in �gure 1. In the plane

(s1, s2), h1 and h2 intersect for (s
∗
1, s
∗
2), the solution of the system. s

(0)
2 is given

by the intersection between the s1 = s2 curve and h2. Indeed, the 0
th order does

not consider mutations (25), so it is equivalent to having mutational exchange

with a strain with the same �tness. Then, h1 taken at s2 = s
(0)
2 gives s

(1)
1 ; then

h2 taken at s1 = s
(1)
1 gives s

(2)
2 , and so on.

Convergence of the iterative approximations Does this iterative process
converge to the solutions (s∗1, s

∗
2)? To answer this question, we study properties

of f to deduce properties of h and ultimately properties of h1(h2), which we use
to prove convergence. All f and g functions are C∞ for s ∈ [0, 1].

It can be easily checked that ∀(s2, s) ∈ ([0, 1], [0, 1]), f1(s2, s) ∈ [0, 1),
∂f1/∂s1 > 0, ∂f1/∂s2 > 0, ∂2f1/∂s

2
1 < 0, ∂2f1/∂s

2
2 < 0, ∂2f1/(∂s1∂s2) ≤ 0.

We additionally need to prove that for s1 ∈ [h1(0), h1(1)] (relevant range as s1
cannot be outside it during the iterative process), ∂f1/∂s1 < 1.

∂f1,all
∂s1

=
(1− µ1)q1N1

(1 +N1s1)2
, and (28)
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Figure 1: Iterative process for the approximation of the survival probability. Here,

the strain 1 is bound to extinction without mutations (s
(0)
1 = 0).

∂f1,ind
∂s1

=
(1− µ1)q1N1

(1 +N1((1− µ1)s1 + µ1s2))2
. (29)

If (1 − µ1)q1N1 < 1, then ∂f1/∂s1 < 1 for any value of s1 and s2. Else, if

(1− µ1)q1N1 ≥ 1, we can check that ∂f1
∂s1

∣∣∣
s1=h1(0)

< 1. As ∂2f1/∂s
2
1 < 0, this is

enough to prove that ∂f1/∂s1 < 1 for any s1 in [h1(0), h1(1)].
Now, we use the properties of f to infer the properties of h. It is clear that

h1([0, 1]) ⊂ [0, 1). As s1 = h1(s2) and s1 = f1(s1, s2), di�erentiating these
equations with respect to s2 leads to dh1/ds2 = α = ∂s2f1/(1−∂s1f1). We have
shown previously that ∂s2f1 > 0 and ∂s1f1 < 1 (for the pertinent range of s1).
As a consequence, dh1

ds2
> 0.

With the second derivative we eventually obtain:

d2h1
ds22

=

∂2f1
∂s22

+ 2α ∂2f1
∂s2∂s1

+ α2 ∂
2f1
∂s21

1− ∂f1
∂s1

. (30)

α is positive, 1− ∂f1
∂s1

> 0 for s
(0)
1 , and the second derivatives of f1 are negative

or zero. As a consequence, d
2h1

ds22
< 0.

We now use the properties of h to deduce the properties of h1(h2).
As hi([0, 1]) ⊂ [0, 1), h1(h2([0, 1])) ⊂ [0, 1).
As for the derivative, (h1(h2))

′ = h′2.h
′
1(h2), thus as h1 and h2 have positive

derivatives, h1(h2) has also a positive derivative.
For the second derivative, (h1(h2))

′′ = h′′2 .h
′
1(h2)+ (h′2)

2.h′′1(h2): the deriva-
tives of hi are positive, and the second derivatives are negative, so the second
derivative of h1(h2) is negative.

The iterative approximation leads to s
(j+2)
1 = h1(h2(s

(j)
1 )). If h1(h2(0)) > 0,

as h1(h2(1)) < 1, the derivative is positive and the second derivative is negative,
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there is at one �xed point in (0, 1), and starting the iteration from any s1 ∈ (0, 1)
converges to it. The same reasoning can be made for s2.

If h1(h2(0)) = 0, the procedure for s
(2k)
1 and s

(2k+1)
2 starts on the �xed point

(0,0), and stays to this point. In this case, the procedure should be done for

s
(2k+1)
1 and s

(2k)
2 only.

C.1.4 Approximation of the survival probabilities in the limit of

small mutation rates

Another approximation is to take both mutation rates small. We derive this
approximation in the general case of n di�erent strains. The generating map is
G(z) = (G1(z), . . . , Gn(z)) where z = (z1, . . . , zn). We de�ne Fi = Gi(1− s)−
(1− si), where 1− s = (1− s1, . . . , 1− sn), and obtain:

F alli (s, µ) = si + qi

1−
∑
j 6=i µij

1 +Nisi
+
∑
j 6=i

µij
1 +Nisj

− 1

 and (31)

F indi (s, µ) = si + qi

 1

1 +Ni

(
(1−

∑
j 6=i µij)si +

∑
j 6=i µijsj

) − 1

 . (32)

Let ŝ = ŝ(µ) denote the survival probabilities which satisfy Fi(ŝ, µ) = 0 for all
i = 1, 2, . . . n. To write down a �rst order approximation of ŝi with respect to µ,
we begin by implicitly di�erentiating Fi(ŝ, µ) = 0 with respect to µij for j 6= i.

∂Fi
∂µij

+

n∑
k=1

∂Fi
∂sk

∂ŝk
∂µij

= 0 (33)

and then evaluate these expressions at µ = 0 and ŝ(0). Since ∂Fi

∂sj
equals zero at

µ = 0 for all j 6= i, equation (33) simpli�es to

∂Fi
∂µij

+
∂Fi
∂si

∂ŝi
∂µij

= 0 (34)

at µ = 0 and s = ŝ(0). Solving for the derivatives evaluated at µ = 0 and
ŝ = ŝ(0) yields

∂F alli

∂µij
= qi

(
1

1 +Niŝj
− 1

1 +Niŝi

)
, (35)

∂F indi

∂µij
= qiNi

(ŝi − ŝj)
(1 +Niŝi)2

, and (36)

∂Fi
∂si

= 1− qiNi
(1 +Niŝi)2

. (37)

Next, we implicitly di�erentiate Fi(ŝ, µ) = 0 with respect to µjk for j 6= i
and k 6= j:

∂Fi
∂µjk

+

n∑
l=1

∂Fi
∂sl

∂ŝl
∂µjk

= 0, (38)
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and evaluate these expressions at µ = 0 and ŝ(0). Since ∂Fi

∂sl
equals zero at µ = 0

for all j 6= i and ∂Fi

∂µjk
= 0, equation (38) simpli�es to

∂Fi
∂si

∂ŝi
∂µjk

= 0 (39)

at µ = 0 and s = ŝ(0).
Since 1+Niŝi(0) = 1 if qiNi < 1 and qiNi otherwise, it follows from equation

(37) that ∂Fi

∂si
> 0 at µ = 0. Hence, (39) implies that ∂ŝi

∂µjk
= 0 for j 6= i and

k 6= j. On the other hand, solving (34) yields

∂ŝi
∂µij

(0) = −
∂Fi

∂µij

∂Fi

∂si

(40)

where
ŝi = ŝi(0, 0) = (qi − 1/Ni)

+
(41)

and x+ = max{0, x}. Hence, the �rst order Taylor approximation of ŝi(µ) is:

(qi − 1/Ni)
+
+
∑
j 6=i

µij
qi

(
1

1+(qiNi−1)+
− 1

1+Ni(qj−1/Nj)
+

)
1− qiNi

(1+(qiNi−1)+)2

(42)

for the all-or-none mechanism, and:

(qi − 1/Ni)
+
+
∑
j 6=i

µij
qiNi((qj − 1/Nj)

+ − (qi − 1/Ni)
+)

((qiNi − 1)+ + 1)2 − qiNi
(43)

for the independent mechanism.
In the special case of evolutionary escape, say ŝ1(0) = 0 and ŝ2(0) > 0 and

n = 2, these �rst order approximations simplify to

ŝall1 ≈ µ1
q1N1

1−N1q1

q2 − 1/N2

1 +N1(q2 − 1/N2)
, (44)

ŝall2 ≈ q2 −
1

N2
− µ2q2, (45)

ŝind1 ≈ µ1
q1N1

1−N1q1

(
q2 −

1

N2

)
and (46)

ŝind2 ≈ q2 −
1

N2
− µ2

N2
. (47)

C.1.5 Comparison of the approximations

It can be shown that the iterative approximation s
(1)
1 taken in the limit µ1

small results in the same expressions as the Taylor expansion when µ is small.

When R1 is not too close to 1, iterative s
(1)
i and small µ approximations work

almost equally well (Fig. 2). However, s
(1)
i is more suitable on a larger range of

parameters.
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Figure 2: Two strains, evolutionary escape. Survival probabilities as a function of

R1 = N1q1, with q1 variable and N1 �xed. All-or-none (red, dotted lines) and in-

dependent (blue, dashed lines). s
(0)
2 (green dot-dashed line), s

(0)
1 (black solid line).

Exact expression for s1 (thick dotted or dashed lines), approximation s
(1)
1 (solid lines),

further approximation with µ1 small (equations 44 and 46) (thin dotted or dashed

lines). N1 = N2 = 10.

C.1.6 The independent mechanism results in more survival of the

viral lineage than the all-or-none mechanism

Consider the case of n strains. Let ci(z) be the generating function for the
number of virions released by a cell infected with a virion of type i. To avoid
degenerate cases, we assume that ci(0) > 0 (i.e. there is a positive probability of

no o�spring) and dkci
dzk

(0) > 0 for some k ≥ 2 (i.e. there is a positive probability
of at least two o�spring). Let µij be the probability that a virion of type i
produces a virion of type j. Note that

∑
j µij = 1. For the case of all-or-

none-mutations, the generating map Gall(z) = (Gall,1(z), . . . , Gall,n(z)) where
z = (z1, . . . , zn) is given by

Gall,i(z) = 1− qi + qi
∑
j

µijci(zj). (48)

In the case of independent-mutations, the generating map Gind(z) is given by

Gind,i(z) = 1− qi + qici

∑
j

µijzj

 . (49)

Since ci are generating maps, they are given by power series with all positive
coe�cients and, consequently, they are convex functions. For x, y ∈ Rn, we
write x ≥ y if xi ≥ yi for all i, x > y if x ≥ y and xi > yi for some i, and x� y
if xi > yi for all i. By Jensen's inequality Gall,i(z) ≥ Gind,i(z) for all z ≥ 0 and
i. This inequality is strict provided that zi 6= zj for some i, j. Furthermore,
the fact that these generating maps correspond to power series with positive
coe�cients implies that Gall and Gind are monotone maps i.e. G(x) ≥ G(y) if
x ≥ y. Moreover, if the mutation matrix (µij) is primitive, then Gn(x)� Gn(y)
whenever x > y. Here, Gt denotes composing the map G with itself t times.

Let eall,i and eind,i be the probabilities of extinction for a population initi-
ated with one individual of type i with all-or-none-mutations or independent-
mutations, respectively. Let eall = (eall,1, . . . , eall,n) and eind = (eind,1, . . . , eind,n).
Standard branching process theory (Harris, 1963) implies that limt→∞Gtall(0) =

10



eall and limt→∞Gtind(0) = eind. We claim that Gtall(0) ≥ Gtind(0) for all t.
Clearly Gind(0) = Gall(0). Assume Gtall(0) ≥ Gtind(0). Then, by the aforemen-
tioned properties of the generating maps,

Gt+1
all (0) = Gall(G

t
all(0))

≥ Gall(G
t
ind(0))

≥ Gind(G
t
ind(0)) = Gt+1

ind (0).

Hence, induction implies the claim and we have shown that eall ≥ eind. When
the ci are di�erent and the mutation matrix is primitive, it can also be shown
that this inequality is strict as G2

all(0)� G2
ind(0).

All-or-none mechanism: out of �ve attempts, only one leads to success.

Independent mechanism: out of �ve attempts, three lead to success.

Figure 3: For a given mean mutation rate, the independent mechanism is more likely

to lead to survival than the all-or-none mechanism. Consider the following simpli�ed

situation. In �ve separate instances, a very un�t virus (depicted by a blue polygon)

infects a host cell (represented by large green disks), producing each time 4 new virions.

With a probability of 20%, it mutates, and this mutant (depicted by a red star) has a

very high survival probability. Clustered mutations lead to less overall survival.

An heuristic explanation for the independent mechanism leading to more
survival is detailed in �gure 3.

C.2 Distribution of the number of virions

C.2.1 Mean number of virions

We de�ne 〈n(j)i (t)〉 the mean number of virions i at generation t, starting from a
particle j at generation 0; αi = qiNi(1− µi) and βi = qiNiµi the mean number
of virions produced in one cycle by a virion of strain i, of the same strain (α),
and of the other strain (β). This leads to:

N(t) =

(
〈n(j)1 (t)〉
〈n(j)2 (t)〉

)
=

(
α1 β2
β1 α2

)t(
δj,1
δj,2

)
. (50)
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Figure 4: Two strains, in�uence of the mutation rate on the mean number of virions.

〈n1(t)〉 (thin lines) and 〈n2(t)〉 (thick lines) as a function of generation t, from (53).

Here the dynamics start at generation t = 0 with one viral particle of strain 1. µ1 =

µ2 = µ, µ = 0.05 (blue, solid lines), µ = 0.1 (purple, dashed lines), µ = 0.2 (red,

dotted lines). q1N1 = 0.9, q2N2 = 1.2.

De�ning r =
√
(α1 − α2)2 + 4β1β2, the eigenvalues are:

λ± =
α1 + α2 ± r

2
, and their associated eigenvectors (51)

~V± =

(α1−α2±r
2β1

1

)
. (52)

Starting with one particle of strain 1, (1, 0) = c+~V+ + c−~V−, with c± = ±β1/r.
At generation t, N(t) = c+~V+λ

t
+ + c−~V−λ

t
−, which can also be written:(

〈n1(t)〉
〈n2(t)〉

)
=

1

λ+ − λ−

((
(λ+ − α2)λ

t
+ − (λ− − α2)λ

t
−
)

β1
(
λt+ − λt−

) )
. (53)

If strain 1 is less �t than strain 2, a larger mutation rate means that a bene�-
cial mutation happens earlier, leading to a faster adaptation. However, it also
means that the long-term mutation-selection balance is shifted towards more
mutations, resulting in a slower long-term growth (Fig. 4).

C.2.2 Variance of the number of virions

De�ning var(i, nj , t) as the variance of the number of virions of type j, and
cov(i, nk, nj , t) the covariance between the number of virions of type k and j,
at generation t starting from one virion of type i; Ai,all = 1, Ai,ind = 1 − µi,
Bi,all = 1, Bi,ind = µi, Call = 0, Cind = 1,

V (t) =

 var(1, n1, t)
cov(1, n1, n2, t)
var(1, n2, t)

 , (54)

M =

 α2
1 2α1β2 β2

2

α1β1 α1α2 + β1β2 α2β2
β2
1 2α2β1 α2

2

 , and (55)
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G =

α1(2N1A1 + 1− α1) β2(2N2B2 + 1− β2)
α1β1

(
2CN1

α1+β1
− 1
)

α2β2

(
2CN2

α2+β2
− 1
)

β1(2N1B1 + 1− β1) α2(2N2A2 + 1− α2)

 , (56)

it can be shown using the derivatives of the generating function that:

V (t+ 1) =MV (t) +GN(t), leading to (57)

V (t) =

t−1∑
i=0

M t−1−iGN(i) (58)

since V (0) = 0. For M , eigenvalues are:

λ0 = α1α2 − β1β2, (59)

λ1 =
1

2

(
α2
1 + α2

2 + 2β1β2 − α1r − α2r
)
= λ2−, and (60)

λ2 =
1

2

(
α2
1 + α2

2 + 2β1β2 + α1r + α2r
)
= λ2+. (61)

λ2 is the largest eigenvalue. Indeed, λ2 ≥ λ1 and λ2 ≥ λ0 (except if α = α2 = 0;
or α = α2 with β1 = 0 or β2 = 0: these regimes are not relevant to our study).
λ2 is the square of λ+, the largest eigenvalue for the mean number of virions:
in the long time limit, the variances and covariances scale as the square of the
mean number of virions. As in the lethal mutant case, the variance is relatively
large (the standard deviation scales as the mean). The eigenvectors are:

v0 =

 −2β2α1 − α2

2β1

 , (62)

v1 =
1

2β2
1(α1 + α2 − r)

α1r(−α1 + α2 + r)− β1β2(α1 + α2 + r)
β1(2β1β2 − α1(−α1 + α2 + r))

β2
1(α1 + α2 − r)

 , and

(63)

v2 =
1

4β2
1(α1α2 − β1β2)

α1r(α1 − α2 + r)− β1β2(α1 + α2 − r)
β1(2β1β2 − α1(−α1 + α2 − r))

β2
1(α1 + α2 + r)

 . (64)

Projecting on the eigenvectors eventually leads to:

V (t) =
β1

(λ+ − λ−)r2
×[

v0

{(
λt0 − λt+
λ0 − λ+

−
λt0 − λt−
λ0 − λ−

)
f ′0 +

(
α1 − α2 + r

2

λt0 − λt+
λ0 − λ+

− α1 − α2 − r
2

λt0 − λt−
λ0 − λ−

)
f ′′0

}
+ v1

{(
λt1 − λt+
λ1 − λ+

−
λt1 − λt−
λ1 − λ−

)
f ′1 +

(
α1 − α2 + r

2

λt1 − λt+
λ1 − λ+

− α1 − α2 − r
2

λt1 − λt−
λ1 − λ−

)
f ′′1

}
+v2

{(
λt2 − λt+
λ2 − λ+

−
λt2 − λt−
λ2 − λ−

)
f ′2 +

(
α1 − α2 + r

2

λt2 − λt+
λ2 − λ+

− α1 − α2 − r
2

λt2 − λt−
λ2 − λ−

)
f ′′2

}]
,

(65)

with:
f ′0 = −β1G12 + (α1 − α2)G22 + β2G32 (66)
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f ′′0 =
1

β1
(−β1G11 + (α1 − α2)G21 + β2G31) (67)

f ′1 = 2β1

(
β1G12 −G22(α1 − α2 + r) +G32

(
−β2 +

r(α1 − α2 + r)

2β1

))
(68)

f ′′1 = 2

(
β1G11 −G21(α1 − α2 + r) +G31

(
−β2 +

r(α1 − α2 + r)

2β1

))
(69)

f ′
2 = β1

(
β1G12(α1 + α2 − r)− 2β2G22

(
2β1 +

α1

β2
(α1 − α2 − r)

)
−G32

(
α1

β1
r(α1 − α2 − r) + β2(α1 + α2 + r)

))
(70)

f ′′
2 = β1G11(α1+α2−r)−2β2G21

(
2β1 +

α1

β2
(α1 − α2 − r)

)
−G31

(
α1

β1
r(α1 − α2 − r) + β2(α1 + α2 + r)

)
(71)

Large t limit We now study this result in the large t limit. λ2 is larger than
λ0 and λ1. λ− ≤ λ+, and λ2+ = λ2. We focus here on the case where virus may
survive, i.e. λ+ > 1. Then λ2 = λ2+ > λ+. So now we simplify previous results
in the large t limit, keeping only the leading terms in λt2.

V (t) ' β1λ
t
2v2

r2(λ2 − λ−)(λ2 − λ+)
(2f ′2 + (λ2 − α2)f

′′
2 ) . (72)

In this limit, the ratio between the variances/covariances in the all-or-none vs.

independent is:
V all

V ind
' 2f

′all
2 + (λ2 − α2)f

′′all
2

2f
′ind
2 + (λ2 − α2)f

′′ind
2

. (73)

We now study this ratio to show that in the large t limit, vari,all > vari,ind.
First, λ2 ≥ α2. Indeed, λ2 = λ2+, λ+ = (α1 + α2 + r)/2. If α1 ≤ α2,

r ≥ α2 − α1, leading to λ+ ≥ α2. Then λ2 ≥ λ+α2 ≥ α2, because we are
interested in the situation where the virus may survive, i.e. λ+ > 1. If α1 ≥ α2,
r ≥ α1 − α2, leading to λ+ ≥ α1 ≥ α2. Then λ2 ≥ λ+α2 ≥ α2.

It can be easily checked that Gall1j ≥ Gind1j ≥ 0, Gall3j ≥ Gind3j ≥ 0, and

Gall2j ≤ 0 ≤ Gind2j .
The coe�cients of G1j in f ′2 and f ′′2 are of the sign of α1 + α2 − r. r =√
((1− µ1)R1 − (1− µ2)R2)2 + 4µ1µ2R1R2. Assuming µ1 ≤ 0.5, 4µ1µ2R1R2 ≤

4(1−µ1)(1−µ2)R1R2, leading to r ≤ ((1−µ1)R1+(1−µ2)R2), thus α1+α2−r ≥
0. The coe�cients of G1j in f

′
2 and f ′′2 are positive, and as Gall1j ≥ Gind1j , so we

conclude that these terms are larger with the all-or-none mechanism than with
independent mechanism.

The coe�cients of G2j in f ′2 and f ′′2 are opposite of the sign of 2β1β2 +
α1(α1 − α2 − r). Fixing a = µ2/µ1, this expression is positive for µ1 between
0 and µc = (3R1 + R2(1 + a) −

√
(3R1 +R2(1 + a))2 − 8R1(R1 +R2))/(4R1).

For a = 1 (i.e. µ1 = µ2), µc = 1/2. ∂µc/∂a < 0: The higher µ2 compared to
µ1, the smaller µc. As G

all
2j ≤ 0 ≤ Gind2j , µ1 < µc ensures that these terms are

larger with the all-or-none mechanism than with the independent mechanism.
The coe�cients of G2j in f

′
2 and f

′′
2 are opposite of the sign of α1r(α1α2r)+

β1β2(α1 + α2 + r). This expression is negative for 0 < µ1 < 1/(1 + µ2/µ1). As
Gall3j ≥ Gind3j , these terms are larger with the all-or-none mechanism than with
the independent mechanism.
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Conclusion on the variance We have proved that in the long time limit the
variance is larger in the all-or-none than in the independent case, provided that
the mutation rate is small enough (e.g. when µ1 = µ2, a su�cient condition is
µi ≤ 0.5). We have not proven that the variance is larger with the all-or-none
mechanism than with the independent mechanism for any generation t, only for
the long time limit, but numerically, we see no instance of the contrary.

C.3 Extension to multi-step evolutionary trajectories

We have discussed a simpli�ed model where one mutation is enough for adap-
tation. In many real systems, however, several mutations are needed for a virus
to adapt to some challenge (Shih et al., 2007; Bloom et al., 2010). Consider a
network of genotypes where each node is a strain and each edge represents one
mutational step. For low mutation rates, the survival probability of �t strains
(i.e. those with R = qN > 1) is relatively unchanged by mutations. Then the
survival probabilities of their un�t (R < 1) neighbors can be approximated for
low mutation rates by adding the contributions to survival resulting from the
mutations to each of the neighboring �t strains (see Iwasa et al. (2004) and
Weissman et al. (2009) for a more detailed discussion of this approach). Then,
survival probabilities of the next-nearest neighbors are considered, and so on.

Heuristic arguments help us to focus on which steps in a multi-step trajectory
will be most in�uenced by replication mechanism. It is clear from arguments
presented above, and in �gure 3, that the surival probability of the viral lin-
eage for a mutational step from an un�t strain to a �t strain di�ers markedly
between the all-or-none and independent mechanisms. In contrast, survival of
�t strains is not strongly a�ected by mutations and consequently is insensitive
to the replication mechanism. Steps between un�t strains will also be relatively
insensitive to replication mechanism, by the following logic. Consider a strain i
with several neighbors, none of them �t, and among which strain j is closest (i.e.
the smallest number of mutational steps from) a �t strain. For su�ciently low
mutation rates, the dominant contribution to si is from mutations to j. Then
the ratio between the survival probabilities under the two mechanisms, sindi /salli ,
tends to 1+Nisj . Because j is also an un�t strain, its survival probability is of
the order of µ or smaller, so Nisj is ≤ Niµ, which in this limit of small mutation
rates is much less than 1. Thus sindi /salli is not very di�erent from one. This
can be understood using a variation of the argument shown in �gure 3: if the
mutant leads to survival only 20% of the time, there is no more clustering of es-
cape mutants in the all-or-none mechanism, so the all-or-none and independent
mechanisms have approximately the same probability of escape. Combining
these arguments to consider multi-step trajectories in general, we see that the
independent mechanism will still lead to more viral survival than the all-or-none
mechanism, but the ratio of the survival probabilities will be dominated by the
steps from un�t to �t strains. The two-strain case presented above provides the
essential building block to explore more complex evolutionary trajectories.
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